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Abstract
We study the effects of correlated hopping in the two-dimensional (2D)
Falicov–Kimball model by means of an extension of the dynamical mean-field
approximation (DMFA). The extension is based on the projection technique
and the DMFA, in which nonlocal correlations are taken into account through
static quantities of a relevant subspace. The effect of the correlated hopping is to
introduce nonlocal self-energy components which remain even atD → ∞. We
show that the sum rules of the spectral function and its moments are preserved.
The spectral function obtained reveals significant nonlocal contributions which
are absent in the DMFA.

1. Introduction

Interest in non-perturbative results for strongly correlated electron systems (SCES) has
attracted the attention of theorists since the discovery of high- Tc superconductors and heavy
fermions. Over the last few years our understanding of SCES has considerably improved,
in particular due to the application of the dynamical mean-field approach [1]. One notable
example is the Mott–Hubbard metal–insulator transition within the paramagnetic phase of
V2O3, where the main features of the transition are accounted for within the single-band
Hubbard model by the dynamical mean-field approximation (DMFA) [2]. However, this
approximation fails to capture the apparent k-dependence of the single-particle self-energy
close to the transition [3, 4, 5]. This failure indicates that nonlocal correlations are omitted
in the DMFA. Indeed, in the DMFA based on the infinite-dimensional limit and a mapping
of the lattice problem onto a single impurity model, the self-energy is purely local. In the
infinite-dimensional limit the DMFA is exact [1, 6].

However, this is no longer true for models with intersite interactions. Within the DMFA
intersite interactions are treated in a Hartree–Fock approximation, hence the DMFA could not
fully incorporate the effect of the intersite interactions even at the infinite-dimensional limit.
Recently, Schiller [7] showed how to incorporate intersite interactions into the framework of the
DMFA. The effect of these interactions is to introduce nonlocal self-energy components which
retain full dynamics in the limit of infinite dimensions. However, it is not clear whether or not
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the approximation preserves the sum rules of the spectral function and its moments. At the
same time, another extension of the DMFA, which allows inclusion of nonlocal correlations,
has been introduced [8, 9, 10, 11] . This extension is based on the projection technique and
the DMFA, in which nonlocal correlations are taken into account through static quantities of a
relevant subspace. The advantage of this extension is that the sum rules of the spectral function
and its moments are preserved. The sum rules of the spectral moments are exact and yield
valuable information which helps in judging the reliability of the method.

In this paper we will adopt this approach to study the effect of correlated hopping in the 2D
Falicov–Kimball model (FKM) [12]. The effect of correlated hopping has been considered in
studying high-Tc superconductivity [13, 14, 15, 16]. Recently, there has been renewed interest
in this problem [7, 17]. Correlated hopping results from matrix elements of the Coulomb
potential involving neighbouring lattice sites and depends on the occupancy of the opposite spin
orientation. It is generally smaller than the onsite Coulomb repulsion, but may not be negligibly
small. Typically, correlated hopping is of the order of 0.1–1 eV [18, 19] and is comparable to
tight-binding hopping. The model with correlated hopping cannot be solved exactly, and only
local mean-field and finite-size diagonalization results are available [13, 14, 15, 16]. Despite
this fact and recent work [7, 17] complete understanding has not yet been attained. Thus there
is an obvious need for investigation of correlated hopping within the nonperturbation approach,
applicable to the entire range of interactions from weak to strong coupling.

The paper is organized as follows. In section 2 we present the general formalism of the
extension of the DMFA, and its application to the FKM with correlated hopping. In section 3
we present the numerical results and discussions. The final section contains conclusions and
further remarks.

2. Extended dynamical mean-field approximation

The Hamiltonian of the FKM including correlated hopping can be written as follows:

H = − t
∑
〈i,j〉
c

†
i cj + t ′

∑
〈i,j〉
c

†
i cj (f

†
i fi + f †

j fj ) + U
∑
i

f
†
i fic

†
i ci

+ εf
∑
i

f
†
i fi − µ

∑
i

(c
†
i ci + f †

i fi), (1)

where t is the hopping parameter of spinless conduction (c) electrons, t ′ is the correlated
hopping parameter, and εf is the energy level of localized f electrons. The onsite Coulomb
interaction between c and f electrons is given by U . µ is the chemical potential for both c
and f electrons. Here f †

i (fi), c
†
i (ci) are the standard notations for creation (annihilation)

operators for f and c electrons at site i. In the limit D → ∞ both parameters t and t ′ must
be scaled as 1/

√
D. For t ′ = 0 the Hamiltonian (1) reduces to the standard FKM [12] and

the self-energy is due to solely the Coulomb onsite interaction U . The FKM is a simplified
Hubbard model with one spin species tied down. Despite the simplification, the FKM contains
a rich phase diagram [20, 21], and is a suitable model of the Mott–Hubbard metal–insulator
transition. A nonzero t ′ results in new self-energy terms with full dynamics, which remain
even in the absence of the onsite interaction U . To investigate the effect of correlated hopping
we employ the extended DMFA [8, 9, 10, 11]. We introduce the retarded Green function for c
electrons

Gij (t − t ′) = −iθ(t − t ′)〈{ci(t), c†
j (t

′)}〉. (2)

where θ(t) is the step function. The Green function can be written in the form

G(k, ω) = 1

ω − εk + µ−�(k, ω) (3)
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where εk = −tγk, γk = 2(cos kx + cos ky). Here, G(k, ω) is the Fourier transform of the
retarded Green function Gij (t) in both time and lattice space and �(k, ω) is the self-energy.
Using the projection technique, the self- energy can be presented in the form of a continued
fraction [22, 23]

�(k, ω)

= �0(k)− εk + µ +
χ1(k)

ω −�1(k)− χ2(k) χ
−1
1 (k)

ω −�2(k)−...
− χn(k) χ

−1
n−1(k)

ω −�n(k)−Mn+1(k, ω)

(4)

where χi(k), �i(k), andMn+1(k, ω) are the susceptibility, frequency and memory functions,
respectively, i.e.,

χi(k) = (
Ai

∣∣A†
i

)
�i(k) = (

Ai
∣∣LiA†

i

)
χ−1
i (k)

Mn+1(k, ω) =
(
An

∣∣∣∣LnQn 1

ω − QnLnQn
QnLnA†

n

)
χ−1
n (k)

where i = 0, 1, ..., n, and operator product (A|B) = 〈{A,B}〉 has been used. Here we have
also introduced the dynamical operators A0, A1, ..., An which are defined as follows:

A
†
i = Qi−1Li−1A

†
i−1 A

†
0 = c†

k, (5)

where Qi = 1 − Pi , and Pi = |A†
i )

1
χi
(Ai | is the projection operator which projects the

Liouville space onto the subspace spanned by Ai ; L0 = L, Li = Qi−1Li−1Qi−1, where L is
the Liouville operator, i.e., LA = [H,A]. For electrons it is clear that χ0(k) = 1. So far
equation (4) is exact. When the memory functionMn+1(k, ω) is neglected, this approximation
is equivalent to restricting the dynamics of the system to a relevant subspace spanned by
{A0, A1...An}. The memory functionMn+1(k, ω) thus contains all corrections of the remaining
subspace. In systems with local interaction, the self-energy�(k, ω) depends only on frequency
in the limit D → ∞ [6]. Consequently, the lattice model can be mapped onto a single
site embedded in a self-consistent medium. In the limit D → ∞ one must also expect
that all susceptibility and frequency functions (except for �0(k)) are constant in momentum
space, and the memory function Mn+1(k, ω) depends only on frequency. However, this no
longer happens in systems with nonlocal interactions. In the presence of nonlocal interactions,
the susceptibility, frequency and memory functions depend on momentum even at the limit
D → ∞. Our approach is to approximate the memory functionMn+1(k, ω) by a local function
Mn+1(ω), but to keep the momentum dependence of susceptibility and frequency function
(χi(k),�i(k)). This approximation includes nonlocal contributions of the relevant subspace,
but neglects those of the remaining subspace. We expect that the nonlocal corrections of
the remaining subspace give only negligible effects. Indeed, enlarging the relevant subspace,
we are able to include next nonlocal corrections of the remaining subspace. Our approach
coincides with the DMFA if the relevant subspace is chosen to be spanned by only A0. The
functionMn+1(ω) together with the susceptibility and frequency functions are then determined
by solving a self-consistently embedded cluster. The self-consistently determined medium
is constructed in such way that the cluster Green function obtained by solving the effective
problem coincides with that of the original lattice. The size of the cluster is chosen according
to nonlocal correlation quantities appearing in the problem. If we restrict the consideration
to nearest-neighbour interactions then we can choose a self-consistently embedded cluster
consisting of two nearest-neighbour sites.
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In what follows we will restrict the relevant subspace to {A0, A1}. When the memory
function is neglected, the restriction corresponds to the two-pole approximation [24]. Recently,
strong-coupling calculations based on an improved two-pole approximation show a quite
reasonable agreement with quantum Monte Carlo results [25]. In the homogeneous phase
we obtain

χ0(k) = 1

χ1(k) = nf (1 − nf )[(U + t ′γk)
2 + zt ′2]

�0(k) = εk − µ + Unf
�1(k) = W(k)− µ + U(1 − nf )

where nf = 1/N
∑
i〈f †

i fi〉, N is the number of lattice sites, z is the lattice number (for a
square lattice z = 2D), and

W(k) = 2zt ′(t ′ − t)(U + t ′γk)− z(1 − 2nf )Ut ′2

(U + t ′γk)2 + zt ′2
. (6)

Here we have neglected all contributions of order 1/D and higher. The self-energy in our
approach is approximated to

�(k, ω) = Unf + 2nf t
′γk +

χ1(k)

ω −�1(k)−M2(ω)
. (7)

The first two terms in equation (7) are the Hartree terms. Within the Hartree approximation the
correlated hopping modifies the single-particle dynamics of the conduction electrons only via
the renormalization of the static single-particle hopping amplitude according to t → t−2nf t ′.
Hence in the DMFA, where the correlated hopping is treated in the Hartree approximation, the
dynamics of the conduction electrons is basically the same as in the absence of the correlated
hopping. The last term in equation (7) is beyond the DMFA. It reflects the dynamical effect of
the correlated hopping even in the absence of the onsite interactionU . If we neglect�1(k) then
the self-energy (7) basically reduces to that obtained by Schiller [7]. However, �1(k) plays
an important role in preserving the sum rules of the spectral function and its moments. It can
be proved that the self-energy (7) preserves the sum rules of the first three spectral moments,
provided the memory functionM2(ω) ∼ 1/ω when ω → ∞. Indeed, sinceM2(ω) ∼ 1/ω as
ω→ ∞, one can write the memory function in the formM2(ω) = ∑∞

n=0 αn/ω
n+1. Expanding

the Green function in the powers of 1/ω we obtain

G(k, ω) = 1

ω
+
m1(k)

ω2
+
m2(k)

ω3
+
m3(k)

ω4
+O

( 1

ω5

)
(8)

where

m1(k) = �0(k)

m2(k) = �2
0(k) + χ1(k)

m3(k) = �3
0(k) + 2�0(k)χ1(k) + χ1(k)�1(k).

The quantitiesmn(k) (n = 1, 2, 3) above are the first three moments of the spectral functions,
i.e.,

mn(k) =
∫

dωωnA(k, ω), (9)

where A(k, ω) = (−1/π)ImG(k, ω + i0+) is the spectral function. By direct calculations
one can show that mn(k) = (

ck
∣∣Lnc†

k

)
. Therefore the sum rules of the first three spectral

moments are preserved. Enlarging the relevant subspace, we are able not only to improve the
approximation but also to fulfil the sum rule of spectral moments of higher orders. The memory
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function M2(ω) is determined by solving an effective model of two nearest-neighbour sites
embedded in a self-consistently determined medium. This effective model can be constructed
by the following action:

S =
∫ β

0

∫ β

0
dτdτ ′X̂†(τ )Ĝ−1(τ − τ ′)X̂(τ ′)

+ U
∫ β

0
dτc†

1(τ )c1(τ )f
†
1 (τ )f1(τ ) + U

∫ β

0
dτc†

2(τ )c2(τ )f
†
2 (τ )f2(τ )

+ (εf − µ)
∫ β

0
dτ(f †

1 (τ )f1(τ ) + f †
2 (τ )f2(τ ))

+ t ′
∫ β

0
dτ(c†

1(τ )c2(τ ) + c†
2(τ )c1(τ ))(f

†
1 (τ )f1(τ ) + f †

2 (τ )f2(τ )) (10)

where X̂†=(c†
1, c

†
2). Here Ĝ(τ ) plays the role of the effective medium. It is determined by the

self-consistently determined condition which requires that the cluster Green function obtained
by (10) coincides with that of the original lattice, i.e.,

G11(ω) = 1

N

∑
k

G(k, ω), (11)

G12(ω) = 1

N

∑
k

G(k, ω)e−ik(R1−R2) (12)

(and similarly for other matrix elements of Ĝ(ω)). Here Ĝ(ω) = 〈〈X̂|X̂†〉〉ω. The self-
consistently determined conditions (11), (12) guarantee that the local and nearest-neighbour-
site Green functions are unchanged when the original lattice is replaced by the cluster embedded
in the effective medium. The effective model (10) can be solved exactly. Indeed, the four
sectors of Hilbert space {̂nf1 = 0, n̂f2 = 0}, {̂nf1 = 1, n̂f2 = 0}, {̂nf1 = 0, n̂f2 = 1},
{̂nf1 = 1, n̂f2 = 1} evolve independently under dynamics defined by (10). Therefore we
obtain

Ĝ(ω) = w0

Ĝ−1(ω)
+

w1

Ĝ−1(ω)− T̂1
+

w1

Ĝ−1(ω)− T̂2
+

w2

Ĝ−1(ω)− T̂3
(13)

where

T̂1 =
(
U t ′

t ′ 0

)
T̂2 =

(
0 t ′

t ′ U

)
T̂3 =

(
U 2t ′

2t ′ U

)
.

Factors wi (i = 0, 1, 2) are defined by

wi = Zi
Z (14)

where

Z0 = 2exp

{∑
n

Tr[lnĜ−1(iωn)− ln(iωn)]e
iωn0+

}

Z1 = 2exp

{
−β(εf − µ) +

∑
n

Tr[ln{Ĝ−1(iωn)− T̂1} − ln(iωn)]e
iωn0+

}

Z2 = 2exp

{
−β(εf − µ) +

∑
n

Tr[ln{Ĝ−1(iωn)− T̂3} − ln(iωn)]e
iωn0+

}
and Z = Z0 + 2Z1 + Z2. The self-energy is then determined as usual through

�̂(ω) = Ĝ−1(ω)− Ĝ−1(ω) (15)
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where

�11(ω) = 1

N

∑
k

�(k, ω)

�12(ω) = 1

N

∑
k

�(k, ω)e−ik(R1−R2).

The memory function can thus be expressed via the self-energy. Together with equation (7)
we obtain

M2(ω) = ω + µ− U(1 − nf ) +
(U 2 + 8t ′2)nf (1 − nf )
�11(ω)− Unf . (16)

Here we have neglected all terms of order 1/D and higher. Equations (3), (7), (13)–(16) form
the self-consistent system of equations for the Green function. It gives explicitly the nonlocal
term to the self-energy. We will solve the system of equations by numerical iterations.

3. Numerical results

In what follows we will use t as the unit of energy. We will consider only the homogeneous
phase with nf = 1/2 and µ = U/2 at temperature T = 1. We solve the above self-consistent
equations by iterations in both real and Matsubara frequencies. The equations for the Matsubara
frequencies are easily obtained from those of the real frequency by simply replacing ω by iωn,
where ωn = (2n + 1)πT .

−8

−4

0

m
1(

k)

10

60

m
2(

k)

0 2 4γk

−1000

−500

0

m
3(

k)

Figure 1. The moments of the spectral function for U = 8, t ′ = −1. The filled diamonds are
results obtained by the present method, the open circles are those of the DMFA.

The algorithm for solving the self-consistent equations is as follows. (i) Begin with
an initial memory function M2(ω) (we chose either M init(ω) = 0 or the Hartree–Fock
approximationM init(ω)). (ii) Next use equation (7) to find �(k, ω). (iii) Use equation (3) to
computeG(k, ω) and together with equations (11) and (12) to compute also the cluster Green
function Ĝ(ω). (iv) Determine Ĝ(ω) from �̂(ω) and Ĝ(ω) by equation (15). (v) Repeat the
above steps for Matsubara frequencies and compute the factorswi by equation (14). (vi) Next,
using equation (13) to compute new Ĝ(ω), and using this new Ĝ(ω) and Ĝ(ω) to determine
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Figure 2. The DOS A(ω) of the conduction electrons for U = 8. The solid lines are the DOS in
2D, while the dashed ones are the DOS in infinite dimensions.
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Figure 3. The DOS A(ω) of the conduction electrons for various positive t ′ (U = 8, T = 1).

�̂(ω) by equation (15), determineM2(ω) by equation (16). Repeat also this step for Matsubara
frequencies. (vii) Go back to step (ii) and repeat the iteration until convergence is reached.

We have obtained a relative error of less than 10−4 for the Green function in all our
calculations. The sum rule for the spectral function is always fulfilled with error less than
10−2. We compute also the first three moments of the spectral function and check them with
their exact values.

In figure 1 we plot the first three moments of the spectral function. It shows that both
DMFA and our approach satisfy the sum rule of the first-order moment. However, the DMFA
does not satisfy the sum rules of the second- and third-order moments. At the same time in
our approach the second- and third-order moments fit very well with their exact values. As
noticed by Potthoff et al [26], the first three moments provide important information on the
spectral function that determine the centres of gravity, the width and weight of the Hubbard
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Figure 4. The DOS A(ω) of the conduction electrons for various negative t ′ (U = 8, T = 1).

bands. Therefore our approach is able to include important correlation effects due to the onsite
interaction U and correlation hopping. This is an advantage of the present method.

In figures 2–4 we present the evolution of the density of state (DOS) when |t ′| increases.
We have chosen U = 8, such that the system is an insulator when correlated hopping is absent
(i.e. t ′ = 0). Since the present approach is justified in the infinite-dimensional limit, we have
compared the DOS in 2D and in infinite dimension. In figure 2 we plot the comparison. It
shows that the results in the two cases are similar. Indeed, we have neglected all contributions
of order 1/D and higher to the susceptibility and frequency functions, hence the results should
be expected. When 0 < t ′ < t the system becomes metallic as in figure 2 . In this value
range of t ′, the lower band expands toward to the Mott–Hubbard gap, such that the gap is
partially filled. As a consequence the chemical potential lies within the lower band, therefore
the system is metallic although the Mott–Hubbard gap still exists. When t ′ = t the system is
again an insulator. When t ′ > t the system becomes metallic again. However, the scenario is
different in comparison with the case of 0 < t ′ < t . In this case, when t ′ > t , the upper band
is widened to the Mott–Hubbard gap, such that the two Hubbard bands merge into one broad
band. In figure 4 we plot the DOS for negative t ′. When t ′ < 0 the DOS does not split into two
bands, hence the system is always in the metallic phase. This feature reflects the increase in the
kinetic energy of the conduction electrons. However, this increase of the kinetic energy is not
simply absorbing correlated hopping t ′ into an effective Hartree renormalization of the single-
particle hopping within the standard FKM. We also notice that with the presence of correlated
hopping the electron–hole symmetry is broken except for t ′ = t . The above behaviours of
the DOS show complicated influences of correlated hopping on the spectral properties of the
system. Our results qualitatively agree with those of a large-dimensional study [7]. However,
we want to emphasize that the present approach has the advantage that the sum rules of first
few moments of the spectral function are fulfilled.

In conclusion, we have considered the effect of correlated hopping in the FKM. Within the
extended DMFA, correlated hopping introduces nonlocal self-energy components that retain
full dynamics even in the absence of the onsite Coulomb interaction. We have shown that
the sum rules of the spectral function and its moments are preserved. The spectral function
obtained shows a significant nonlocal effect of correlated hopping on the spectral function,
which is absent in the DMFA.
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